Simple MoM Software in MATLAB

- RWG basis functions

\[
\bar{J}(\vec{r}) = \sum_{n=1}^{N} x_n \bar{j}_n(\vec{r})
\]
Simple MoM Software in MATLAB

\[\bar{j}_n(r) = \begin{cases} \frac{l_n}{2A_n^+} \bar{\rho}_n^+, & \bar{r} \in T_n^+ \\ \frac{l_n}{2A_n^-} \bar{\rho}_n^-, & \bar{r} \in T_n^- \\ 0, & \text{otherwise}, \end{cases} \]

- Galerkin’s method
 \[\bar{t}_m(\bar{r}) = \bar{j}_n(\bar{r}) \]
Simple MoM Software in MATLAB

- View the shapes of receiving antennas
 - viewer plate coarse
 - viewer plate fine
 - viewer dipole
 - viewer slot

- Built-in mesh generator of the MATLAB PDE toolbox, `pdetool`.

- **Code sequence**
 - `rwg1.m`--- the edge elements are created.
 - `rwg2.m`--- output the *subtriangle’s midpoints* for each triangle patch.
 - `rwg3.m`--- contains f, ε_0, and μ_0. `impmet` is called to output `impedance.mat`.
Antenna mesh from subdirectory mesh

- mesh1.mat
- mesh2.mat
- impedance.mat
- current.mat

- rwg1.m
- rwg2.m
- rwg3.m
- rwg4.m
- rwg5.m

- Creates RWG edge elements
- Computes impedance matrix
- Determines excitation voltage and solves MoM equations
- Determines and visualizes surface currents

Figure 2.2. Flowchart of the scattering algorithm of Matlab’s directory of Chapter 2.
Simple MoM Software in MATLAB

Figure 2.5. Barycentric subdivision of the primary triangle. The triangle’s midpoint is shown by a white circle.
Figure 2.7. Incident field geometry for the plate.
Simple MoM Software in MATLAB

- **rwg4.m**--- determines the excitation vector; solves the system of equations to produce `current.mat`.
- **rwg5.m**--- calculates and plots the resulting surface current density on the surface.
- **rwg6.m**--- supplementary.

1. Given surface current distribution \rightarrow \text{radiated electromagnetic field}

![Flowchart of Matlab scripts of chapter 3](image)

Figure 3.3. Flowchart of the Matlab scripts of chapter 3.
Simple MoM Software in MATLAB

- ef i el d1. m--- ObservationPoint = [5; 0; 0];
- ef i el d3. m--- ObservationPoint = [0 y z]';

1. The surface current distribution due to an applied voltage in the antenna feed. Code sequence.

- Fig. 4.5

\[
V_{m=n} = \int_{T_n^+ + T_n^-} E \cdot \hat{f}_n dS = V \int_{T_n^+ + T_n^-} \delta(y) \hat{y} \cdot \hat{f}_n dS = l_n V \quad \text{for edge element } m = n
\]

\[
V_m = \int_{T_n^+ + T_n^-} 0 \cdot \hat{f}_m dS = 0 \quad \text{otherwise}
\]

- rwg4. m--- FeedPoint = [0; 0; 0];
Figure 4.2. Flowchart of the complete radiation algorithm.
Simple MoM Software in MATLAB

Figure 4.5. Feeding edge model. Black arrows show the electric field direction in the antenna gap. White arrows show the direction of the surface current on the antenna surface.
Simple MoM Software in MATLAB

Figure 4.9. (a) Monopole antenna structure after execution monopole.m. (b) Surface current distribution at 75 MHz; the white color corresponds to larger magnitudes. (c) Model of the base-driven monopole.